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The behaviour of a binary mixture of a vapour and an inert gas around the spherical 
condensed-phase droplet is studied analytically using kinetic theory. By the singular- 
perturbation method, the linearized Boltzmann equation of B-G-K type is first solved 
for problems with spherical symmetry under the diffusive boundary condition when 
the Knudsen number of the problem is small. The macroscopic equations and the 
appropriate boundary conditions in the form of the temperature and partial-pressure 
jumps on the interface between the droplet and the gas phase, which enable us to 
treat the problems at the level of ordinary fluid dynamics, are derived together 
with the Knudsen-layer structure formed near the interface. Then the velocity, 
temperature and pressure fields around the droplet are explicitly obtained, as well 
as the mass, heat and energy flows from it. The results obtained are capable of 
describing the transition from the diffusion-control to the kinetic-control mechanism 
in the mass-transfer process. The negative-temperature-gradient phenomenon, a 
common phenomenon for pure-vapour cases (absence of inert gas), is also possible, 
manifesting itself more easily as the kinetic-control mechanism becomes prevalent 
and the critical condition for its existence is given. The present analysis could be 
applied to other problems with spherical symmetry as well. 

1. Introduction 
Evaporation and condensation processes occurring at  the interface between a 

condensed phase and its vapour, regardless of whether or not an inert gas exists, 
involve a non-equilibrium region of the dimension of the molecular mean free path 
adjacent to the interface. Within this region, collisions between molecules are scarce, 
and the behaviour of the vapour may be considered to deviate significantly from that 
predicted or predictable by continuum theory under empirical adhesive (no-slip and 
jump) boundary conditions at the interface. In the absence of inert gas, a typical 
behaviour found by kinetic-theory analysis is that even in the continuum limit the 
temperature and pressure of a vapour at the interface are different from the 
temperature of the interface and the corresponding saturated-vapour pressure ; 
actually they take larger or smaller values than the corresponding ones associated 
with the interface, depending upon whether a condensation or evaporation process 
is taking place (Pa0 1971a, b ;  Siewert 8z Thomas 1973; Sone & Onishi 1973, 1978). 
These jumps are related uniquely to the rate of evaporation or condensation at the 
interface, providing the appropriate boundary conditions for the treatment of 
problems at the fluid-dynamics level. These jumps are also responsible for the 
existence of the negative-temperature-gradient phenomenon first noted by Pao 
(1971 a )  and later studied by various authors analytically (Thomas, Chang & Siewert 
1974; Onishi 1977; Sone & Onishi 1978) and numerically (Matsushita 1976). The mass 
transfer in this case may be said to be controlled by the kinetic effect. The situation 
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may, however, be quite different when an inert gas is present. For systems with small 
Knudsen numbers (molecular mean free path divided by the characteristic length), 
evaporation and condensation of the vapour will be affected by the molecular 
collisions between the component gases. Especially when the concentration of the 
inert gas is small, the inert gas molecules may be driven toward the condensing surface 
and away from the evaporating surface by the collisions with molecules of the vapour, 
forming a fairly large partial-pressure gradient, and consequently hindering the 
vapour mass flow. As the concentration increases, this hindrance effect due to the 
collisions may become large and eventually the vapour mass transfer against this 
effect will depend on its ability to diffuse through the inert gas or the diffusion 
coefficient of the mixture, which is a small quantity of the order of the Knudsen 
number of the system. The mass transfer, therefore, would be very small in this 
diffusion-control case, compared with that by the kinetic effect. 

The estimation of the effect of inert gas on the mass transfer from a droplet of a 
vapour is of basic importance not only from the theoretical standpoint but also in 
various technological applications having a close relation to dehydration, combustion, 
dust removal, etc. (see Fuchs 1959). The present study is concerned mainly with this. 
Now consider the following steady problem : a spherical condensed-phase droplet of 
radius L is placed in an infinite expanse of a binary mixture of a vapour and an inert 
gas, say gas A and gas B respectivcly. At a great distance from the droplet, the 
temperature is T, and the partial pressures are P$ and Pz respectively. The droplet 
is kept a t  a constant temperature Tw, at  which the saturated-vapour number density 
is N& and its pressure is P&, where P& = N& kT,, k being the Boltzmann constant. 
It should be noted that the stipulation that the droplet’s temperature is held constant 
and that the problem is steady is not unrealistic but is a good approximation to real 
physical systems in which weak evaporation or condensation is taking place around 
relatively large droplets (this is within the limits of the present analysis). 

This problem was studied first by Maxwell in 1877 (see his scientific papers 1965) 
within the framework of continuum theory. Fuchs (1959) discusses the details of this 
theory and its extensions, citing various related references. The main defect of the 
continuum theory lies in the fact that  it cannot describe at all the transition of mass 
transfer from diffusion control to kinetic control as the concentration of inert gas 
becomes smaller. The cause of this defect stems from the empirical (not kinetic- 
theory-based) boundary conditions taken at the interface of the droplet, which are 
not dependent on the Concentration. The appropriate boundary conditions based on 
kinetic theory, however, are strongly dependent upon this concentration, and this 
dependence is crucial in describing the transition from diffusion-control to kinetic- 
control mass transfer (see $84 and 6).  A kinetic-theory approach, therefore, is needed 
for the proper description of the behaviour of component gases. Sampson & Springer 
(1969) treated the problem for the case P z  % P2 by the application of Lees’ moment 
method (Lees 1959; Lees & Liu 1962) to the Boltzmann equation, and obtained the 
mass flux, which becomes exactly coincident with Maxwell’s result (see Fuchs 1959; 
Davies 1978) in the continuum limit. Shankar (1970) also studied the same problem 
based on the same method but for all concentrations, and obtained an expression for 
the mass flux which seems to describe fairly correctly the qualitative aspect of the 
transition from diffusion-control to kinetic-control mass transfer. His expression in 
the limit to Continuum reduces to that of Maxwell with a correction factor 
(PS +Pz) , lPz  due to the mass motion when diffusion control is prevailing, and the 
present analysis confirms this (see $6).  There are, however, at least two drawbacks 
to the above work: one is that  although the moment method may be quite effective 
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in obtaining the gross quantities, e.g. the mass and heat transfers, i t  may fail to give 
accurately the local behaviour of the mixture and its component gases especially for 
small-Knudsen-number cases (the local behaviour is not given explicitly in the above 
work) ; the second is that  the above authors assumed a priori that  the temperatures 
of the component gases are the same at any point in the field, which is not valid within 
the Knudsen layer (see $4) and may affect the proper values of the temperature and 
partial-pressure jumps of the component gases and hence the mass and heat trans- 
fers. A more rigorous analysis is therefore required for this problem and for its 
understanding. 

To carry out the present analysis, the following assumptions are made: (i) the 
behaviour of each component gas is governed by the Boltzmann equation of the B-G-K 
type proposed by Hamel (1965) (governing equation) ; (ii) gas molecules leaving the 
interface (of the condensed phase) have a Maxwellian velocity distribution charac- 
terized by its temperature Tw and velocity (zero here), the number density of gas A 
N& being given as the saturated-vapour number density a t  that  temperature Tw, 
while that of gas B N k  is determined by the condition of no net mass flow across 
the interface (kinetic boundary condition); (iii) at least one of the component gases 
is dense, and hence the mean free path of that  component is small compared with 
the characteristic length of the problem, e.g. L (i.e. the Knudsen number K 6 1 ) ;  
and (iv) the deviation 8 of the system from a stationary equilibrium reference state 
is small, and the governing Boltzmann equation and its kinetic boundary condition 
can be linearized about the reference state (i.e. s2 is neglected compared with KN 
for any positive integer N ) .  Since the analysis in the Knudsen layer is the most 
difficult and laborious part and furthermore has a universal nature, to  some extent, 
regardless of the problems, it may be worthwhile to give the analysis in as general 
terms as possible so that it may be applicable to various other problems of spherical 
symmetry (applicable also to  problems of axial symmetry with slight modification), 
and then proceed to the present concrete problem of the spherical droplet. By assum- 
ing that the concentration of inert gas has a moderate or large value, the actual 
analysis has been worked out to  the second order of the Knudsen number in its 
expansion form, where the effect of curvature of the boundary first enters in the 
macroscopic jump conditions. As the concentration becomes smaller than a certain 
threshold value (see $6), however, the smallness of the concentration shifts some of 
the terms in the expansion to lower order (e.g. from the third order of the Knudsen 
number, which is neglected here, to  its second order, and from second order to first 
order, etc.), invalidating the whole analysis. By reconsidering the expansion, or 
equivalently by reverting to  the original unexpanded quantities, we could allow 
for this shifting in the analysis, obtaining a final result whose validity changes 
consistently from the second order of the Knudsen number to its first order as the 
concentration decreases and becomes eventually smaller than the threshold value. 

2. Kinetic equations and the boundary conditions 
For problems with spherical symmetry, the linearized version of the Boltzmann 

equation of B-G-K type (Hamel 1965) in the spherical coordinate system may be 
written for steady states as follows: 

[ E A V B  - VA) 
a12 kB[@] = -@ + nA + 26,. wA + (c2 -2) T~ + 2,thB - 

1 +a,,  
+,thA(g2- i )  ( T B - T A ) ] 9  (2.1) 
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M: - k9[@] = - C$ + nB + 2Mf,  vB + ( Me2 - $) 7B 
a 

+ 2 P A P  '" [Mf,.(VA -VB) +,uB(M['-$) (TA -TB)], (2.2) 
a22 f a21 

p A  = nA+7A, (2.5) 

pB = nB+7B, (2.6) 

and 

where (Lr, 0, cp) is the spherical coordinate system with its origin at  the centre of the 
droplet, 9 the Boltzmann differential operator in this coordinate system (Kogan 
1969), N f ( 2 R A  To)-$ E( 1 +@) and hr;(2RA To)-$ E( 1 +e) the molecular-velocity- 
distribution functions of gas A and gas B respectively, (2RA To? (f,., 68, $,) the 
molecular-velocity vector, (2RA To)i vs the r-component of the mean flow velocity P, 
x(l +nS) the number density P, To( 1 + T ~ )  the temperature !P, e(1 +ps)  the 
partial pressure P( = NS k P ) ,  mA and mB the molecular masses of gas A and gas B 
respectively, and R, the gas constant per unit mass of gas A. S appearing as 
superscript refers to A or B. Here L,  To, kTo) are taken, respectively, 
as a reference length, a reference temperature, a reference number density and a 
reference pressure of the problem. N ;  K A A  and N: K~~ represent respectively the 
number of collisions per unit time of a gas-A molecule with the other gas-A molecules 
and with gas-B molecules at the ref'erence state, and thus N , A K ~ ~ + N : K ~ ~  is the 
average collision frequency for a gas-A molecule irrespective of its collision 
partners, being related to the mean free path l A  of gas-A molecules by 
l A  = ( ~ R , T , / ~ ) ~ / ( N ~ K ~ ~ + N ~ K ~ ~ ) .  I t  therefore follows that k in (2.7) is equal 
to  k = (in:) K ,  K (= ZA/L) being the Knudsen number at the reference state. 
Similarly, since N ~ K ~ ~ + N : K ~ ~  is related to the mean free path ZB of gas-B 
molecules, we know that a = lA/lB. K A A ,  K~~ and K ~ ~ (  = K ~ ~ ) ,  which are assumed to 

and ( = 
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be constant, are associated with the transport coefficients of the mixture and of its 
component gases (Hamel 1965) : 

where qM and D A B  are respectively the viscosity and diffusion coefficients of the 
mixture at the reference state, qA and qB being the viscosities of the component gases, 
defined by qA = P t / ( N t  K A A )  and qB = P:/(Nf K B B )  (see e.g. Vincenti & Kruger 
1965). 

The kinetic boundary conditions for q9 and q9 on the interface (at r = 1 )  are given 
in the linearized form as 

@ = q& = & + ( p - f ) T W ,  = P & + ( ( E ~ - $ ) T ~ ,  for 6, > 0, (2.9) 

q 9 = & = G + ( M C 2 - - % ) ~ , ,  = P ~ + ( M E ~ - % ) T ~ ,  forEr>0, (2.10) 

where T~ = (Tw-To)/T, is the perturbed temperature of the interface from the 
reference state, 4 = (Nsw-x)/x and pk = (P“,-G)/G are respectively the 
perturbed number density and pressure of the molecules of gas S leaving the surface 
after the interaction with it, andpk = n k  + T ~  since pw = pw kTw holds. n& (or p&) 
is a unique function of T ~ ,  and its explicit functional form is obtained from the 
Clapeyron-Clausius relation (see e.g. Landau & Lifshitz 1969), while np (or p;) is 
as yet an unknown constant, to be determined as part of the solution from the 
no-net-mass-flow condition at the interface (at r = l) ,  i.e. 

vB = J t rq9Ed< = 0 or ng = -!j7w-2(xM)4J ErfBd<. (2.11) 

If N t  (or P t )  is chosen so as to be the saturated-vapour number density (or pressure) 
corresponding to To, we then have 

Er < 0 

&, = ( y - 1 ) ~ ~  or p+, = y ~ ~ ,  (2.12) 

where y = hL/(RATo), h, being the latent heat of vapourization per unit mass of 
gas A (e.g. Onishi 1977). 

Multiplying (2.1) by E, E, E, and (E2-t) E and integrating the resultant equations 
over the whole molecular-velocity space, we obtain the important and useful 
equations, known as transport equations, for gas A. In  a similar manner, the 
corresponding equations for gas B are also obtained. They are : 

I (r2+) = 0, (2.13a) 
r2 dr 

(2.1321) 

(2 .13~)  

(2.14 a )  
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(2.14b) 

A direct consequence of (2:14a) and the condition (2.11) is that  

vB(r) = 0. (2.15) 

It may be preferable, and more natural for the description of the behaviour of the 
gas phase, to use the fluid-dynamic quantities associated with the mixture, the 
perturbed quantities of which are obtained from the relations 

(2.16) I mA N t  uA + m, N," vB 

N t  rA+ N r  rB 

N t  nA + N: nB 
Po 9 NO 

N t  p A  + N: p B  
NO 

V =  , n =  

7 =  P =  
NO 

where (2RA To)+ w, No( 1 + n),  To( 1 + 7 )  and Po( 1 + p )  are respectively the mean mss-$cno 
velocity, the number density, the temperature and the pressure of the mixture, and 
po=m,Nf+mBN,",  N o =  Nt+N;and Po= P t + P ; .  

3. Derivation of macroscopic equations 
Equations (2.1) and (2.2) involve two lengthscales L and ZA over which the solution 

may change. First we shall be concerned with the solution which varies over a length 
of the order of L, i.e. a$/& - O($).  We call this part of solution the fluid-dynamic 
part or the Hilbek part (with suffix H attached), and try to find it in an expansion 
form in k: 

Substituting the expansion into the original equations, with (2.15) being taken into 
account, and equating like powers of k ,  we obtain for m 2 0 

@ = & = &o+k&l+ k 2 d 2 +  ... . (3.1) 

&m = nAHm+2trv&m+(t2-t)7AHm 

[ - t r  v&m + P A  (t2 - t )  ( 7 E m  - 4 m ) I  - g [ & m - J ,  + 2PB - 
1 +a12 

(3.2) 
a12 

B 
&m = nHm+ ( J f t 2 - t ) r E m  

where n s m ,  ukm and 7Lrn are defined by (2.3) and (2.4) with $ = dm, with the 
understanding that any quantity f H n  for n < 0 becomes identically zero. Direct 
substitution of (3.2) and (3.3) into the transport equations (2.13) and (2.14) with cf 
replaced by Gm leads us to  the following set of equations to be satisfied by the 
fluid-dynamic quafitities pLm,  vkm and rgm (with m 2 0 ) ,  

dPAHrn = a12 vAHm+1, (3.4a, b, c )  I d  
- - (r2u.",,) = 0, wfio = 0. - 
r2 dr dr  - 2 p B K  
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which holds at least up to m = 2. Taking into account ( 3 . 4 ) ,  we can now have the 
explicit expressions for & and & from (3 .2 )  and (3 .3 ) .  For example, for &m 

1 drfimP2 
+ ( 5 2 - 3 6 3  ( E 2 - 9  ;- (m = 0, 1 ,  2 ) .  (3 .5 )  

dr  
Comparing (3 .5 )  and the corresponding expression for Q)Bm with (2 .9 )  and (2 .10) ,  

respectively we find that &o can satisfy the boundary condition if pE0 and rg0 are 
set equal t o  the corresponding boundary data on the interface ( r  = l ) ,  i.e. 

A - A  B - B  (3 .6a,  b ,  c )  

where p k ,  and rwo are respectively the first terms in the following expansions of p k  
and rw, 

(3 .7 )  

Conditions ( 3 . 6 ~ )  and (3 .6b )  now provide the boundary conditions for the system of 
equations (3 .4 )  with m = 0 (continuum limit) a t  the interface. It may be noted, 
however, that ( 3 . 6 ~ )  does not specify the value for p g o  a t  r = 1 ,  but does determine 
p g o  when the value of p g o  has been known at r = 1 ,  since p g  is to be determined 
as part of the solution from (2 .11)  (no-net-mass-flow condition). It is clear, however, 
that  Gm with m 2 1 cannot satisfy the boundary condition, and this situation is 
ascribed to  the singular character of (2.1) and (2.2) for small values of k .  Therefore, 
we need to reconsider the behaviour of the component gases in the close vicinity of 
the interface, and seek the solution satisfying the given boundary value a t  the 
interface and merging eventually into the one given by the fluid-dynamic part just 
discussed above (e.g. Sone 1969, 1971 ; Sone & Onishi 1978). This change of behaviour 
may be expected to occur over a small distance, of the order of the molecular mean 
free path, and hence is called rapidly changing behaviour (in contrast t o  the moderate 
one of the fluid-dynamic part). A small region where such behaviour occurs is called 
the Knudsen layer, the details of which will be discussed in the next section as a form 
of correction to the fluid-dynamic part. 

Before proceeding to  the Knudsen-layer analysis, we must examine the expansion 
of the solution in k.  So far we have tacitly assumed that the concentration ratio 
N,B/N; be of order unity. However, when it becomes small or large compared with 
0(1), i t  may shift down or shift up terms of the expansion a t  a certain order of k to 
lower or higher order [because uI2 - O(Nf/N,A) ,  a21 - O(l)],  which leads to  complete 
destruction of the present expansion. Actually when N,B/Nt - O ( k ) ,  dpfim/dr must 
balance v k m ,  not as in ( 3 . 4 ~ )  (vk0 becomes no longer zero). The solution in this 
case must be expanded in terms of two parameters, k and N,B/Nt,  or in terms of k 
with the magnitude of N,B/N: relative to k being fully taken into account. However, 
in view of the fact that  the original equations are linear and homogeneous, we do 
not have to  re-expand the solution in the two parameters but have only to revert 
to the original unexpanded quantities. This is done by multiplying ( 3 . 4 a ) ,  (3 .4d )  and 
(3 .4e )  by km and ( 3 . 4 ~ )  by km+l respectively, and then summing with respect to m. 
As a result of this, we obtain the following final set of macroscopic equations 

P H O  - PWO, ‘AH0 = ‘WO) PHO - PWO, 

p k  = p g o  + k p k l  + k 2 p k 2  + . . . , rw = rwo + krW1 + k2rW2 + . . . . 

(3 .8a ,  b )  

(3 .8c,  d )  
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and 

which are valid up to O(k2) for practically all concentrations [v& up to O(k3) for 
moderate and large values of N F / N t ] .  These equations are so arranged as to be of 
an appropriate form with respect to the boundary conditions for them a t  the 
interface, to  be given later in the next section. Equation (3.8d) expresses that a vapour 
flows down its partial-pressure gradient when the concentration ratio is of order unity 
or larger, but this will not precisely be the case when the ratio becomes smaller and 
smaller, as will be seen in $6 (see also Onishi 1984). Note also that rH = T& = 7g, a t  
least up to the present stage of approximation. 

It should be noted that the well-posedness of the system of differential equations 
is in general lost in the reduction such as the one from (3.4) to (3.8) when the system 
involves higher-order derivatives in its inhomogeneous terms (see e.g. Cercignani 
1975; Sone 1984). The present linearized system of equations, however, is clearly not 
such a case. 

(3.9) p g  = -xpH+--gp , ,  Nt A N O  T: = T&,  ng = P & - T , ,  S 
No No 

4. Knudsen-layer analysis and macroscopic jump conditions 
Now we shall consider the rapidly changing part of the solution within the Knudsen 

layer near the interface so that we can obtain the complete solution to the present 
boundary-value problem. This part of the solution is called the Knudsen-layer 
(correction) part, and will be sought in the form of a correction to  the fluid-dynamic 
part, i.e. 

r-r* 
f = f H ( T ) + f K ( q )  with 7 = - (4.1 ) k ’  

where f stands for any one of the perturbed quantities of interest, and the fluid- 
dynamic partf, has already been worked out in $3. re( = 1) appearing in a stretched 
coordinate 17 is introduced to indicate explicitly the terms associated with the 
curvature of the interface. Since fK has the nature of a correction to fH within the 
Knudsen layer, we must demand that 

fK + 0 (sufficiently rapidly) as 7 -+ 00. (4.2) 

At this stage, we immediately find bhat d[(r, + k ~ ) ~ v $ ] / d r  = 0 from (2.13a), and the 
unique solution subject to (4.2) is 

?&(?#I) = 0. (4.3) 

Now assuming again that N F / N t  is of order unity, we also seek the Knudsen- 
layer-correction part in the expansion form in k, 

fK = fKo+kfK1+k2fKz+  ... , with f ~ o  0. (4.4) 

The above expansion starts from O ( k ) ,  because, to order ko, the fluid-dynamic part 
of the solution fHo can satisfy the given boundary condition and therefore the 
Knudsen-layer-correction part of this order, fKo, does not exist. 

Direct substitution of (4.1) with (4.3) and (4.4) into the original equations (2.1) and 
(2.2) yields the following equations for gm (rn = 1 ,  2, . . .), 
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Since equations (4.5) and (4.6) are one-dimensional ordinary differential equations 
with respect to 7, we may be able to solve them for &m formally in terms of nSKm, 
7Em and &l (1  < m) subject to (4.2), (4.7) and (4.8). Elimination of Gm by 
substitution of the resulting expressions for Sm into (2.3) and (2.4) with q9 = hm 
gives rise to simultaneous linear integral equations for nSKm, Gm( = 0) and 7gm. For 
m = 1, these integral equations are 

"ink, = ~ , [ n ~ , , 7 ~ , + 2 p ~ p ~ -  (7Bl-7kl)]-(7h-.wl) [J2(7)-J0(7)1 
1 +a12 

+ ~ A H l ~ ~ ' J o ~ 7 ~ - ~ J l ~ 7 ~ l + ~ ~ J 3 ~ l ] ~ - i J l ~ ~ ~ l ~  ~ T A H O  (4 .10~)  



It should be understood that, when the integral operators are applied to (4.10c), 
(4.10d) and (4.11b), the argument 7 and the integral variable vo are replaced by 
and c0 respectively. Equations (4.11a) and (4.11b) are related to the integral 
equations for vk, and vgl,  which in the present case are identically zero, and are the 
consequences of these integral equations evaluated at  7 = 0 [(4.11b) can also be 
derived from (4.9)]. These two equations have been used in the derivation of the set 
of integral equations in (4.10). 7g1 (evaluated a t  T = T * )  is an as yet unknown constant 
to be determined simultaneously with the set of functions n;,, 7k1, np, and 7g1 
(actually, T& is so determined that these functions vanish as v+ a). It is noted that 
two types of small lengthscale over which the Knudsen-layer part varies are involved 
in the above integral equations: lA and lB, which lead to 7 and 5 respectively. 

The set of solutions [(7&1-7W,), nkl, 7g1, n&, T:,] together with @&,-p&,) and 
( p & - p g l )  may conveniently be expressed in the form 

(4.13) 

and 
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mB/mA Nf/Nt 
0.5 0.1 

1 .o 
10.0 

1 .o 0.1 
1 .o 

10.0 
2.0 0.1 

1 .o 
10.0 

- d f  

0.37962 
0.16248 
0.02434 
0.406 14 
0.22337 
0.04061 
0.42243 
0.28436 
0.067 18 

dP 
1.38491 
1.648 28 
1.81344 
1.30272 
1.30272 
1.302 72 
1.282 30 
1.16551 
0.97928 

TABLE 1. K~~ = 

d," 
0.27987 
0.11843 
0.01758 
0.30031 
0.16517 
0.03003 
0.312 87 
0.21236 
0.05070 

KBB = KAB 

d!l 
- 0.095 08 
-0.01526 

0.00024 
- 0.121 03 
- 0.066 56 
- 0.01208 
- 0.131 47 
- 0.109 57 
- 0.033 50 

d t  
1.029 43 
1.458 12 
1.764 36 
0.91049 
0.91050 
0.91051 
0.88222 
0.72909 
0.51473 

with 
Cf = @d4M-d-2Yl Of, Qt+2,uA,uBa"-(@,B-@f)], 

1 +a12 

where and Q f  (i = 4, 1) are rapidly decreasing functions of 7, and d,M and q are 
constant, dy being determined simultaneously with Qf and @ f .  The set 
[ dy ,  Of,  Sf, Qp, @ F ]  of course satisfies the set of equations (4.10~)-(4.10d), with 
inhomogeneous terms proportional to v i l  for i = 4 and to d&,/dr for i = 1 in each 
equation of (4.10). These functions and constants depend only on the concentration 
ratio and the kind of substance of the two component gases, i.e. 

(4.17) 

The solution [d?, O,A, @f,  QF, @ F ]  can be obtained fairly accurately by the refined- 
moment method of Sone & Onishi (1973) [see also Sone & Onishi 1978 for the 
correction of the misprints]. In applying the method, we have expressed each function 
in a series expansion in Jn of the following form 

N 

n - 0  
[Qf, @,A, @?I = 2 [ A n ,  Bn, Cn, o n ] J n ( z )  (4.18) 

with 
7 for a > 1, 
a7 for a < 1, 

.={ (4.19) 

where A,, B,, C, and D, are constants which depend on the four parameters above. 
The convergence of the solutions with N was good and we could obtain the solutions 
correct to 5 or 6 significant figures for d,M, and to 4 or 5 significant figures for both 
the functions and q. Some numerical values of (d?, Cf ,  CF) for N = 13 are listed in 
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m B / m A  Nf INt  
0.5 0.1 

1 .o 
10.0 

1 .o 0.1 
1 .o 

10.0 
2.0 0.1 

1.0 
10.0 

- Cf 

2.12144 
2.08244 
2.05290 
2.12412 
2.08851 
2.05289 
2.12652 
2.09747 
2.058 12 

c: 
0.56943 
0.60929 
0.63892 
0.55844 
0.55844 
0.55844 
0.55444 
0.533 18 
0.50384 

TABLE 2. K~~ = 

ct 
0.81445 
0.791 52 
0.77486 
0.81631 
0.79585 
0.77539 
0.81782 
0.801 45 
0.77832 

KBB = KAB 

- c: 
0.38900 
0.441 44 
0.47976 
0.38466 
0.43086 
0.47705 
0.381 52 
0.41948 
G.472 18 

C? 
0.70068 
0.83392 
0.92988 
0.663 03 
0.66304 
0.663 05 
0.65243 
0.595 16 
0.51372 

mB/mA N F / N $  
0.5 0.1 

1 .O 
10.0 

1 .o 0.1 
1 .o 

10.0 
2.0 0.1 

1 .o 
10.0 

- CF 

0.07444 
0.03482 
0.00556 
0.079 15 
0.04353 
0.00792 
0.07856 
0.04924 
0.01053 

C? 
0.71254 
0.754 03 
0.784 10 
0.55844 
0.55844 
0.55844 
0.451 78 
0.43084 
0.40264 

TABLE 3. K~~ = 

C? 
0.04500 
0.02059 
0.00323 
0.04547 
0.02501 
0.00455 
0.04323 
0.027 63 
0.00605 

KBB = KAB 

C? 
0.13572 
0.06221 
0.00977 
0.10261 
0.05643 
0.01025 
0.07753 
0.04905 
0.01063 

c,B 
1.027 32 
1.19018 
1.30475 
0.66295 
0.66295 
0.66296 
0.46474 
0.41682 
0.35026 

tables 1-3, and a graph of (Qf, Qf, Q$, 0,") is shown in figure 1 for M = 2.0, 
N t / N f  = 0.1, K~~ = KAB = KBB. d y  and may be called the jump coefficients 
of temperature and partial pressure respectively. Conditions (4.14) and (4.15) 
give the appropriate boundary conditions for the set of equations in (3.4) with 
m = 1 at the interface for a not so small concentration Nf/Nf. vkl in these con- 
ditions may be replaced by -[(l +a,2)/(2pBa,2)] (dp&,/dr), from (3.4~). Note that 
[d?, C t ,  Qf, @p, QF, SF] here corresponds to [di, Ci, Qi, Si] for the pure-vapour case 
(Sone & Onishi 1978, where the superscript * is attached for i = 4), and in the limit 
Nf/Nt-+O [ d y ,  Cf, Qf, Sf] becomes identical to [di ,  C,, Q,, @,I. In addition, Q,B and 
@$ in this limit are not zero, but satisfy a set of integral equations of a different type 
having inhomogeneous terms involving d y  and Sf. It must be mentioned that 
exactly the same type of integral equations occurred at  any order of k in the two-surface 
problem of evaporation and condensation studied by Onishi (1984), although the 
details are omitted there owing to the limited space. Some values of d? and Cf ( = C? 
in his notation) and the graphs of 0: and @q are also found there (for N = 9). 

Now we proceed to the next-order approximation in k (m = 2). We have actually 
obtained the integral equations for the set [(7&,-7,,), nP2, 7P2, nE2, ~p,] and the 
two expressions determining (p&, -pG2)  and (pE2-pg2) respectively. This set of 
integral equations is extremely complex in that, although the homogeneous parts are 
exactly the same as in (4.10), the inhomogeneous parts involve various types of 
integrals of the functions (Qf, @f, Q$, @$) studied earlier in addition to simple J ,  
functions. Therefore, we have to omit these equations, jumping directly to their 
solutions. As was done for the first-order approximation (m = l), the present 
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0.6 - 

0.3 r 
1 

O . I I  0.3 

FIGURE 1.  Knudsen-layer-correction functions. mB/mA = 2.0, N f / N t  = 0.1, K~~ = K~~ = 3. 
(a) QP, SP, a?, e? (i = 4 1 )  versus z. (a) at, @,A, a;, S: versus z. (c) a:, e;4, a:, e? versus z. 
(d )  Szf, ef, a?, e? versus Z.  

solutions are decomposed as 

(4.20) 

dT&OdM (4.21) ' 

dr'o A (4.22) 

drA dv$l M 2 
dr dr r* 

7fi2 -7w2 = v & ~  d," + A d ?  + 2 -d6 --I& dy +- - 
r., dr 

r* dr "' 
and p & - ~ & ~  = v&,Cf++Cf'+2*CA-- drA 2 A CA+-- 

dr 6 'H1 7 
r* 

CF, (4.23) 
dr 
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where Q (i = 5 ,6 ,  7 )  are constants to be determined by the present sf,t of solutions 
(dF ,  St, @t, SZF, @?) ( i  = 5 ,6 ,  7) together with the solutions studied a', the first-order 
approximation. 

We could obtain a solution for [d?, C t ,  CF, SZt, Qt, SZF, @,"I as Accurate as those 
studied earlier. For the remaining two sets, the convergence was rLot so good because 
of the complex structure of the inhomogeneous terms invohing integrals of the 
solutions in the previous stage of approximation. However, ap iar as the temperature- 
jump coefficients d? (i = 7, 5) are concerned, 3 significant figures are reliable. We have 
also listed some of the numerical values of (d?, C,", C,") ( L  = 6,7,5)  in tables 1-3 and 
blotted the Knudsen-layer-correction functions [SZ,", @t, SZF, @:I (i = 6, 7 ,5)  in 
figure 1. The appropriate boundary conditions for (3.4) with m = 2 are now given by 
(4.21) and (4.22) for not so small N F / N t .  It may be noted that the decomposition 
in (4.20)-(4.23) is not unique; actually the term proportional to dv&,/dr can be 
incorporated in the term v&Jr,, through ( 3 . 4 ~ ) .  However, we leave it as it is because 
it corresponds to [d,, C,, SZ,, @,I for the pure-vapour case (Sone & Onishi 1978). In 
addition, [ d r ,  Cf, Of, @f, OF, 63 corresponds to [d, ,  C,, SZ,, S,] for the pure- 
vapour case studied by the same authors, and [ d p ,  @', Qk, a:, @:] to [d, ,  Q,, @,] 
for the heat-conduction problem of a single gas (Sone & Onishi 1977 ; Onishi 1979). 

Now multiplying (3.6) by ko, (4.13)-(4.16) by k and (4.20)-(4.23) by k2,  and then 
summing, we finally obtain the appropriate boundary conditions for the macroscopic 
equations in (3.8) at the interface and the Knudsen-layer corrections near it. Some 
rearrangements of these expressions then give as the boundary conditions appropriate 
for ( 3 . 8 ~ )  and (3.8b): 

(4.24) 

at the interface ( r  = r* = l), and as the Knudsen-layer corrections 

= v& 
dr& 

+ k -  
dr 

dv& 
dr 

t2k-  
2 

- k - v &  
r* 

(4.25) 

near the interface, where pg( = ng + 7%) has been included for possible later use, and 
@ = SZf + @f (i = 4, 1 ,  6, 7 ,  5). The partial pressure p g  due to the molecules of gas B 
reflected from the interface is to be determined from the condition 

d7A dvA 2 2 dr& 
r* dr 

p& = p g  - V& C,B - k 2 C? - 2 k 2 CF + k - V& Cg - k2 - - C, , (4.26) 
dr r* 

after the fluid-dynamic part of the solutions has been found. It is noted that v& in 
(4.24)-(4.26) may be replaced by -k[( 1 +u12)/(2pBa12)] (dp&/dr) I,.-, from (3 .8d) .  
When the concentration ratio N,B/N,A becomes small, smaller than O ( k ) ,  the above 
expressions become no longer valid up to order k2 ,  because terms of order k3 associated 
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with higher-order derivatives of v&, which were neglected in the present analysis, may 
come up to order k2. In this case, the temperature and partial-pressure jumps and 
the Knudsen-layer structures appear at order ko (continuum limit) (cf. (3 .6)  and (4.4)). 
In  the limit Nf/Nt-+O, the above expressions coincide exactly with the results for 
spherically symmetric cases derived from the general theory for the pure-vapour case 
(Sone & Onishi 1978). 

So far we have derived the set of the macroscopic equations (3.8) and (3.9) and 
the appropriate boundary conditions (4.24) (see (5 .6)  for the continuity condition of 
energy flow across the interface, if required) together with the Knudsen-layer 
corrections (4.25) from the kinetic-theory analysis. 

5. Heat and energy fluxes 
In addition to the results in $ 3  and $4, i t  will become necessary to have available 

the formulas for the heat and energy fluxes. Let qs = e ( 2 R A  To):Qs and 
q = Po(2RA To)!& be the heat fluxes for component-S gas and for the mixture 
respectively. Then QA, QB and Q are defined as 

QA = J5,(E2-S)@Ed5, QB = JS,(MS2-S)pBBdt, Q = - Nt QA+- Nf QB. (5.1) 
NO NO 

The fluid-dynamic parts of QA and QB are derived from the application of (3.2) and 
(3 .3)  to the above definitions with g? = dm. Summing all the contributions, we 
obtain for Q& and QE, and then for Q H :  

d7H 

P0(2R, To)f dr ’ (5.3) 

which are all valid up to O(k3) ,  where AM is the thermal conductivity of the mixture. 
Note that the above formulas are simply the Fourier formulas for heat conduction. 
The Knudsen-layer-correction parts, on the other hand, can be calculated with the 
use of ( 2 . 1 3 ~ )  and ( 2 . 1 4 ~ )  with I$ = &, and here is listed only Q K ,  the heat flux for 
the mixture, 

Q K I = O ,  & ~ 2 = 0 ,  Q K 3 = 0 9  . (5.4) 

With these quantities, the energy fluxes are readily obtained as 

where hS = P:(2RATo)iP represents the energy flux for component-S gas, and 
h = Po(2RA T,)!H for the mixture. 

Incidentally, we note that the condition of continuity of energy flow across the 
interface is expressed as 

yv, a t r  = re(= l ) ,  (5 .6)  
N t  N: 1 AC d7” dTH - N t  -qk [ N o  -+-7 No a M ~ [ ~ & - ~ ] - ~ y v A = _ e  

mA N O  

where = To( 1 + 7“) denotes the temperature field inside the condensed phase and AC 
its thermal conductivity. In some problems, when the temperature of the condensed 
phase cannot be considered constant but a function of r ,  the above condition should 
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be supplemented in the analysis in addition to  (4.24). Note that h, = yRA To is the 
difference between the enthalpy %RATo (per unit mass) in the vapour phase and 
that in the condensed phase. 

6. Results for the droplet problem 
We now consider the spherical-droplet problem posed in the introduction, and find 

explicitly the velocity, temperature, pressure and number-density fields. Let the state 
a t  infinity be taken as the reference state. Then 

To = T,, Pt = P“, @ = Ns,, (6.1) 

pA+O, rA+O, p+O, asr-+co, (6.2) 

where P, = PS,/(kT,) .  With this choice, the conditions a t  infinity now become 

which supplement the boundary conditions (4.24) at r = 1 .  The fluid-dynamic part 
subject to (4.24) and (6.2) is immediately obtained from (3.8) as 

F 
rw, p , = O ,  v & = k A -  A (6.3) 

A r A - -  G 
P & = , P W ,  H -  r 2  Pw, 

other relevant quantities being given from (3.9) and (2.16), where A = (1 +a,,)/ 
(2pB a,,), and F and G satisfy the following relations 

[:I:] = -kAF[i:]-kG[i:], 

If P i  is the saturated-vapour pressure a t  T,, f becomes equal to  y [  = h,/(RA T,)], 
a material constant of gas A (see (2.12)). From (6.4) the explicit expressions for F 
and G become 

l+kA(S,-SS,)  
1 + k ( A S , + S 4 ) + k 2 A ( S , S , - S , S , ) ’  

G =  1+k(S4-S2) 
1+k(ASl+S4)+k2A(SlS4-S2S3)’  

F =  

(6.5) 

valid up to O(kZ) for moderate and large values of NF/N$ and up to O(k) for its smaller 
values. 

The distributions of various quantities around the droplet after the Knudsen-layer 
correction has been made are : 

(6.6) 
F vA=uA - k A -  A H -  ,zPW? 
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FIQURE 2. Temperature, pressure and number-density distributions of the mixture. mB/mA = 2.0, 
k = 0.1, K~~ = K~~ = K ~ ~ .  
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p N $ p A  +A- N B  p B  

P& - N ,  P& N ,  P&' 

n N k  nA N B  nB - +A- A--- nw N = n &  N a n & '  

where z is defined in (4.19), and 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

p o o = m A N $ + m B N z  and O r =  ( N $ Q f + N E @ F ) / N , .  

rs/rw is obtained from (6.8) with the replacement of O r  by 697. Samples of the 
temperature, pressure, and number-density distributions of the mixture are shown 
in figure 2, and the partial pressure and number density of gas B in figure 3. As can 
be seen, the pressure of the mixture is uniform except in the Knudsen layer, which 
is also apparent from (6.11). In  figures 2 (a ,  b ) ,  the negative-temperature-gradient 
phenomenon is observed for small concentrations. The critical condition for this 
phenomenon to appear is given by the value of r, and is obtained by setting dTA,/dr 
or G equal to  zero as 

1 + kA[  - c: + 2k(2Ct + Cf)] r, = 
kn[ - d y  + 2k(2d,M + d?)] 

' (6.15) 

For r larger than r,, the temperature gradient of the mixture (and its component 
gases) is always negative in the sense that i t  is opposite to the gradient which would 
be established by the maintained temperature difference between the droplet and a t  
infinity. In  the limit N z / N $  + O  (pure-vapour case), r, becomes 

(6.16) 

which is identical to  that calculated from the result of Sone & Onishi (1978). We notice 
in figure 3 that, as N z / N $  becomes small, the inert gas forms large pressure and 
(number-)density gradients because its molecules are driven away from the droplet 
for evaporation @& > 0) and driven toward it for condensation (p& < 0) owing to 
the collisions with vapour molecules. It should be mentioned a t  this point that the 
dependence of the pressures of the mixture and its component gases on f is 
insignificant, and practically zero in the graphs. 
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FIGURE 3. Partial pressure and number-density distributions of inert gas B. mB/mA = 2.0, k = 0.1, 
K A A  = KAB = KBB. 

P i  PB-PB 
’ PZ P$--P2. 

W 
N 2  NB- NB m .  -- 

’ NE N k - N A , ’  
(a )  r= 11. (b )  r= 3. 

Now, with the above results, the mass flow h, heat flow 4 and energy flow a from 
the droplet are given as follows: 

(6.17) 

(6.18) 

(6.19) 

where the formulas for heat and energy fluxes in $5 are used. 
7-2 
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We shall examine now F and Q for various concentrations. First let NE/NA, N O(kn) 
with n = 1 ,2 ,  3, ... ; then A - O(kPn) ,  F N O(kn-l), G - 0(1) and kAF - O(1). We 
see from (6.17) that  the mass flow is directly proportional to  the difference between 
the saturated-vapour pressure a t  T, and the vapour pressure a t  infinity. This is 
qualitatively the same as in the pure-vapour case, and the present mass transfer may 
be said to be controlled by the kinetic effect. I n  the limit NB,/N$+O, we obtain 
from (6.5) 

+... , G =  l-ra,-k(a,+Ta,)+ ... , (6.20) 

with 
1 4Ct + 2Cf + Cf d M  

a,, = -- = 0.469035, a3 = = 0.50, c: (C:l2 

d M  
0.209541, a, = 4 = 

CA 
a2 = -1 = 0.261 926, 

C t  c: 
a4 = dy+a2d,M = 1.185700, a5 = a 3 d ~ - a , d ~ + a , ( 4 d ~ + 2 d ~ )  = O .  

The solution in this limit reduces to that given by Sone & Onishi (1978) for the 
pure-vapour case, where the definition of the a,'s is the same. For later use in the 
graphs, we write explicitly the mass and heat flows for this limiting case: 

(6.21) 

(6.22) 

Next let N Z / N $ ,  N O ( l / k n )  with n = 0, 1 ,2 ,  ... . Then A N 0(1), and F and G are 
also of order unity, reducing to 

F =  1-kC( ' ) -k2C~)+ P ..., G =  l-kC$)-k2C$?)+ ..., (6.23) 

with 

C$) = - Ard? + d y  , C$?) = Ard," Cg' - drC$) + AT(4d,M + 2dy)  + 2dF. 

Since kAF N O(k) ,  we note that the mass flow in this case is smaller than that in the 
previous case by a factor of k ,  and we may express (6.17) as 

m DAB N ,  P&- PA, 
[ 1 - kc'') P - k2Cg) + . . .I,  

4 n L 2 -  RAT, NB, L (6.24) 

by the use of the relation (2RA T,); LkA = ( N , / N Z )  DAB. The mass transfer in this 
case is proportional to the gradient of vapour pressure and depends on the diffusion 
coefficient, the ability of the vapour to diffuse through the inert gas. I n  the continuum 
limit (k+O) ,  (6.24) agrees with the one given by Shankar (1970), and this gives 
Maxwell's result modified by a factor N,/N:. It is noted that the solutions with (6.23) 
are also obtained from (3.4) subject to the boundary conditions (3.6a), (3.66), (4.14), 
(4.15), (4.21), (4.22) on the interface and (6.2) a t  infinity. 

Figures 4 and 5 show the graphs of m/mp and Q/Qp, respectively, for practically 
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FIGURE 5. Heat flow versus concentration. mB/mA = 2.0, 
K A A  = KAB = KBB. (a )  r = 11. ( b )  r = 3. 

all concentrations. It is clearly seen that figure 4 confirms what is stated above. I n  
particular, figure 4(a) shows that when NB,/NA, increases from O ( k )  to  O ( l ) ,  the mass 
transfer, or m/mp, drops sharply from O( 1) to O ( k ) .  In  the limit NB,/NA, + co,i vapour 
flow is determined by frequent collisions with inert gas and is less affected by them 
when the vapour molecules are heavier (see figure 4 b ) .  In  figure 4(c) m/mp, with riz 
given in (6.24), is plotted to show how the solution a t  each stage of approximation 
in its expansion form of k behaves as the concentration of inert gas decreases. Note 
that the discrepancy in figure 4 between unity and the value of m/mp in the limit 
N z / N $  - t O  is of order k2 because r f b p  is valid to order k and so also m in this limiting 
case. As for the heat flow, i t  is negative for r larger than r, since i t  is proportional 
to the temperature gradient (see (5.3)). Figure 5 (a )  is one of these cases, and @ changes 

t This does not mean the complete absence of vapour gas. Vapour gas may exist (enough to 
satisfy the Boltzmann equation) but if so it does not affect the behaviour of the inert gas at all. 
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from positive to  negative as a result of the change of sign of the temperature gradient 
as NB,/NA, decreases (note that 4, in this case is always negative). Figure 5 ( b ) ,  on 
the other hand, is a case in which the negative temperature gradient never occurs 
at any concentration. 

Finally, we note that the present problem reduces to a simple heat-conduction 
problem for a sphere immersed in an inert gas mixture by formally putting F = 0. 
Then from (6.4) we have 

k(Cf + 2kCf) r= 1 G=----- 
l + k S 4 ’  l + k S 4  ’ 

(6.25) 

the latter now determining p&, the pressure for inert gas-A molecules reflected from 
the surface of the sphere (this corresponds to (4.26)). 
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